Development of 3D Microvascular Networks Within Gelatin Hydrogels Using Thermoresponsive Sacrificial Microfibers.
نویسندگان
چکیده
A 3D microvascularized gelatin hydrogel is produced using thermoresponsive sacrificial poly(N-isopropylacrylamide) microfibers. The capillary-like microvascular network allows constant perfusion of media throughout the thick hydrogel, and significantly improves the viability of human neonatal dermal fibroblasts encapsulated within the gel at a high density.
منابع مشابه
Co-release of cells and polymeric nanoparticles from sacrificial microfibers enhances nonviral gene delivery inside 3D hydrogels.
Hydrogels can promote desirable cellular phenotype by mimicking tissue-like stiffness or serving as a gene delivery depot. However, nonviral gene delivery inside three-dimensional (3D) hydrogels remains a great challenge, and increasing hydrogel stiffness generally results in further decrease in gene delivery efficiency. Here we report a method to enhance nonviral gene delivery efficiency insid...
متن کاملFabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.
This paper describes a general procedure for the formation of hydrogels that contain microfluidic networks. In this procedure, micromolded meshes of gelatin served as sacrificial materials. Encapsulation of gelatin meshes in a hydrogel and subsequent melting and flushing of the gelatin left behind interconnected channels in the hydrogel. The channels were as narrow as approximately 6 microm, an...
متن کاملFunctional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels.
The generation of functional, 3D vascular networks is a fundamental prerequisite for the development of many future tissue engineering-based therapies. Current approaches in vascular network bioengineering are largely carried out using natural hydrogels as embedding scaffolds. However, most natural hydrogels present a poor mechanical stability and a suboptimal durability, which are critical lim...
متن کاملSynthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels.
Poly(ethylene glycol) (PEG) hydrogels are popular for cell culture and tissue-engineering applications because they are nontoxic and exhibit favorable hydration and nutrient transport properties. However, cells cannot adhere to, remodel, proliferate within, or degrade PEG hydrogels. Methacrylated gelatin (GelMA), derived from denatured collagen, yields an enzymatically degradable, photocrosslin...
متن کاملFabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
For tissue engineering applications, scaffolds should be porous to enable rapid nutrient and oxygen transfer while providing a three-dimensional (3D) microenvironment for the encapsulated cells. This dual characteristic can be achieved by fabrication of porous hydrogels that contain encapsulated cells. In this work, we developed a simple method that allows cell encapsulation and pore generation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced healthcare materials
دوره 5 7 شماره
صفحات -
تاریخ انتشار 2016